Dow Chemical Company Ltd encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

Section 1. Identification of the substance/preparation and of the company/undertaking

1.1 Product identifiers
Product Name
FROTH-PAK™ 600 Isocyanate

1.2 Relevant identified uses of the substance or mixture and uses advised against
Identified uses
Component for polyurethane manufacture.

1.3 Details of the supplier of the safety data sheet
COMPANY IDENTIFICATION
Dow Chemical Company Ltd
Diamond House, Lotus Park
Kingsbury Crescent
TW18 3AG Staines, Middlesex
United Kingdom

Customer Information Number: 0203 139 4000
SDSQuestion@dow.com

1.4 EMERGENCY TELEPHONE NUMBER
24-Hour Emergency Contact: 0031 115 694 982
Local Emergency Contact: 00 31 115 69 4982

Section 2. Hazards Identification

2.1 Classification of the substance or mixture

Classification according to EU Directives 67/548/EEC or 1999/45/EC

<table>
<thead>
<tr>
<th>Carcinogen category</th>
<th>R40</th>
<th>R48/20</th>
<th>R36/37/</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xn</td>
<td></td>
<td></td>
<td></td>
<td>Limited evidence of a carcinogenic effect.</td>
</tr>
<tr>
<td>Xn</td>
<td>R40</td>
<td></td>
<td></td>
<td>Harmful by inhalation.</td>
</tr>
<tr>
<td>Xn</td>
<td>R48/20</td>
<td></td>
<td></td>
<td>Harmful: danger of serious damage to health by prolonged exposure through inhalation.</td>
</tr>
<tr>
<td>Xi</td>
<td>R36/37/</td>
<td></td>
<td></td>
<td>Irritating to eyes, respiratory system and</td>
</tr>
</tbody>
</table>
2.2 Label elements

Labelling according to EC Directives

Hazard Symbol:
Xn - Harmful.

Risk Phrases:
R40 - Limited evidence of a carcinogenic effect.
R20 - Harmful by inhalation.
R48/20 - Harmful: danger of serious damage to health by prolonged exposure through inhalation.
R36/37/38 - Irritating to eyes, respiratory system and skin.
R42/43 - May cause sensitization by inhalation and skin contact.

Safety Phrases:
S1/2 - Keep locked up out of reach of children.
S23 - Do not breathe spray.
S36/37/39 - Wear suitable protective clothing, gloves and eye/face protection.
S45 - In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).
S51 - Use only in well-ventilated areas.
S56 - Dispose of this material and its container to hazardous or special waste collection point.

Contains:
- Methylenediphenyl disocyanate, homopolymer
- Diphenylmethane-4,4’-di-isocyanate

Contains isocyanates. See information supplied by the manufacturer.

Pressurized container: protect from sunlight and do not expose to temperatures exceeding 50 °C. Do not pierce or burn, even after use.

2.3 Other Hazards
No information available.

Section 3. Composition/information on ingredients

3.2 Mixture
This product is a mixture.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-No. 39310-05-9</td>
<td>—</td>
<td>40.0 - 60.0 %</td>
<td>Methylenediphenyl disocyanate, homopolymer</td>
<td>Acute Tox., 4, H332 Skin cor/irr, 2, H315 Eye cor/irr, 2, H319 Resp. Sens., 1, H334 Skin Sens., 1, H317 Carc., 2, H351 STOT SE, 3, H335 STOT RE, 2, H373</td>
</tr>
<tr>
<td>EC-No. NLP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS-No. 101-68-8</td>
<td>—</td>
<td>40.0 - 60.0 %</td>
<td>Diphenylmethane-4,4’-di-isocyanate</td>
<td>Acute Tox., 4, H332 Eye cor/irr, 2, H319 Skin cor/irr, 2, H315 Skin Sens., 1, H317 Resp. Sens., 1, H334 STOT SE, 3, H335 STOT RE, 2, H373</td>
</tr>
<tr>
<td>EC-No. 202-966-0 Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index 615-005-00-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CAS-No. / EC-No. / Index | Amount | Component | Classification: 67/548/EEC
---|---|---|---
CAS-No. 39310-05-9 EC-No. NLP | 40.0 - 60.0 % | Methylenebisphenyl diisocyanate, homopolymer | Carc. 3: R40; Xn: R20; R48/20; Xi: R36/37/38; R42/43
CAS-No. 101-68-8 EC-No. 202-966-0 Index 615-005-00-9 | 40.0 - 60.0 % | Diphenylmethane-4,4'-di-isocyanate | Carc. 3: R40; Xn: R20; R48/20; Xi: R36/37/38; R42/43
CAS-No. 811-97-2 EC-No. 212-377-0 | 5.0 - 10.0 % | 1,1,1,2-Tetrafluoroethane | Not classified.

Substance(s) with an Occupational Exposure Limit.
For the full text of the H-Statements mentioned in this Section, see Section 16.
See Section 16 for full text of R-phrases.

Section 4. First-aid measures

4.1 Description of first aid measures
General advice: First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment.
Inhalation: Move person to fresh air. If not breathing, give artificial respiration; if by mouth to mouth use rescuer protection (pocket mask, etc). If breathing is difficult, oxygen should be administered by qualified personnel. Call a physician or transport to a medical facility.
Skin Contact: Remove material from skin immediately by washing with soap and plenty of water. Remove contaminated clothing and shoes while washing. Seek medical attention if irritation persists. Wash clothing before reuse. An MDI skin decontamination study demonstrated that cleaning very soon after exposure is important, and that a polyglycol-based skin cleanser or corn oil may be more effective than soap and water. Discard items which cannot be decontaminated, including leather articles such as shoes, belts and watchbands. Suitable emergency safety shower facility should be available in work area.
Eye Contact: Immediately flush eyes with water; remove contact lenses, if present, after the first 5 minutes, then continue flushing eyes for at least 15 minutes. Obtain medical attention without delay, preferably from an ophthalmologist. Suitable emergency eye wash facility should be immediately available.
Ingestion: If swallowed, seek medical attention. Do not induce vomiting unless directed to do so by medical personnel.

4.2 Most important symptoms and effects, both acute and delayed
Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), no additional symptoms and effects are anticipated.
4.3 Indication of immediate medical attention and special treatment needed
Maintain adequate ventilation and oxygenation of the patient. May cause respiratory sensitization or asthma-like symptoms. Bronchodilators, expectorants and antitussives may be of help. Treat bronchospasam with inhaled beta2 agonist and oral or parenteral corticosteroids. Respiratory symptoms, including pulmonary edema, may be delayed. Persons receiving significant exposure should be observed 24-48 hours for signs of respiratory distress. If you are sensitized to diisocyanates, consult your physician regarding working with other respiratory irritants or sensitizers. Exposure may increase “myocardial irritability”. Do not administer sympathomimetic drugs such as epinephrine unless absolutely necessary. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient. Excessive exposure may aggravate preexisting asthma and other respiratory disorders (e.g. emphysema, bronchitis, reactive airways dysfunction syndrome).

Section 5. Fire Fighting Measures

5.1 Extinguishing Media
Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective.

5.2 Special hazards arising from the substance or mixture

Hazardous Combustion Products: During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Nitrogen oxides. Isocyanates. Hydrogen fluoride. Hydrogen halides. Carbon dioxide.

Unusual Fire and Explosion Hazards: Some components of this product will burn in a fire situation. Container may vent and/or rupture due to fire. Vaporizes quickly at room temperature. Dense smoke is produced when product burns.

5.3 Advice for firefighters

Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Stay upwind. Keep out of low areas where gases (fumes) can accumulate. Do not use direct water stream. May spread fire. Fight fire from protected location or safe distance. Consider the use of unmanned hose holders or monitor nozzles. Immediately withdraw all personnel from the area in case of rising sound from venting safety device or discoloration of the container. Move container from fire area if this is possible without hazard. Use water spray to cool fire-exposed containers and fire-affected zone until fire is out.

Special Protective Equipment for Firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during fire fighting operations. If contact is likely, change to full chemical resistant fire fighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.

Section 6. Accidental Release Measures

6.1 Personal precautions, protective equipment and emergency procedures: Isolate area. Keep unnecessary and unprotected personnel from entering the area. Refer to Section 7, Handling, for additional precautionary measures. Keep personnel out of low areas. Keep upwind of spill. Spilled material may cause a slipping hazard. Ventilate area of leak or spill. If available, use foam to smother or suppress. See Section 10 for more specific information. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection.

6.2 Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.

6.3 Methods and materials for containment and cleaning up: Contain spilled material if possible. Absorb with materials such as: Dirt. Vermiculite. Sand. Clay. Do NOT use absorbent materials such
as: Cement powder (Note: may generate heat). Collect in suitable and properly labeled open containers. Do not place in sealed containers. Suitable containers include: Metal drums. Plastic drums. Polylined fiber pacs. Wash the spill site with large quantities of water. Attempt to neutralize by adding suitable decontaminant solution: Formulation 1: sodium carbonate 5 - 10%; liquid detergent 0.2 - 2%; water to make up to 100%, OR Formulation 2: concentrated ammonia solution 3 - 8%; liquid detergent 0.2 - 2%; water to make up to 100%. If ammonia is used, use good ventilation to prevent vapor exposure. Contact Dow for clean-up assistance. See Section 13, Disposal Considerations, for additional information.

Section 7. Handling and Storage

7.1 Precautions for safe handling

Handling

General Handling: Use only with adequate ventilation. Avoid breathing vapor. Avoid contact with eyes, skin, and clothing. Avoid prolonged or repeated contact with skin. Wash thoroughly after handling. Keep container tightly closed. Contents under pressure. Do not puncture or incinerate container. Do not enter confined spaces unless adequately ventilated. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Other Precautions: Spills of these organic materials on hot fibrous insulations may lead to lowering of the autoignition temperatures possibly resulting in spontaneous combustion.

7.2 Conditions for safe storage, including any incompatibilities

Storage

Store in a dry place. Protect from atmospheric moisture. Do not store product contaminated with water to prevent potential hazardous reaction. See Section 10 for more specific information. Additional storage and handling information on this product may be obtained by calling your sales or customer service contact.

Storage Period: 15 Months
Storage temperature: 15 - 25 °C

7.3 Specific end uses

See the technical data sheet on this product for further information.

Section 8. Exposure Controls / Personal Protection

8.1 Control parameters

Exposure Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>List</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphenylmethane-4,4’-di-isocyanate</td>
<td>ACGIH</td>
<td>TWA</td>
<td>0.005 ppm</td>
</tr>
<tr>
<td></td>
<td>UK WEL</td>
<td>TWA as NCO</td>
<td>0.02 mg/m3 SEN</td>
</tr>
<tr>
<td></td>
<td>UK WEL</td>
<td>STEL as NCO</td>
<td>0.07 mg/m3 SEN</td>
</tr>
<tr>
<td>1,1,1,2-Tetrafluoroethane</td>
<td>AIHA WEEL</td>
<td>TWA</td>
<td>4,240 mg/m3 1,000 ppm</td>
</tr>
<tr>
<td></td>
<td>UK WEL</td>
<td>TWA</td>
<td>4,240 mg/m3 1,000 ppm</td>
</tr>
</tbody>
</table>

A “SEN” notation following the exposure guideline refers to the potential to produce sensitization, as confirmed by human or animal data.

8.2 Exposure controls

Personal Protection
Eye/Face Protection: Use chemical goggles. Chemical goggles should be consistent with EN 166 or equivalent.

Skin Protection: Use protective clothing chemically resistant to this material. Selection of specific items such as face shield, boots, apron, or full body suit will depend on the task.

Hand Protection: Use chemical resistant gloves classified under Standard EN374: Protective gloves against chemicals and micro-organisms. Examples of preferred glove barrier materials include: Butyl rubber. Polyethylene. Chlorinated polyethylene. Ethyl vinyl alcohol laminate (“EVAL”). Examples of acceptable glove barrier materials include: Viton. Neoprene. Polyvinyl chloride (“PVC” or “vinyl”). Nitrile/butadiene rubber (“nitrile” or “NBR”). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended. NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Respiratory Protection: Atmospheric levels should be maintained below the exposure guideline. When atmospheric levels may exceed the exposure guideline, use an approved air-purifying respirator equipped with an organic vapor sorbent and a particle filter. For situations where the atmospheric levels may exceed the level for which an air-purifying respirator is effective, use a positive-pressure air-supplying respirator (air line or self-contained breathing apparatus). For emergency response or for situations where the atmospheric level is unknown, use an approved positive-pressure self-contained breathing apparatus or positive-pressure air line with auxiliary self-contained air supply. In confined or poorly ventilated areas, use an approved self-contained breathing apparatus or positive pressure air line with auxiliary self-contained air supply. Use the following CE approved air-purifying respirator: Organic vapor cartridge with a particulate pre-filter, type AP2.

Ingestion: Use good personal hygiene. Do not consume or store food in the work area. Wash hands before smoking or eating.

Engineering Controls
Ventilation: Use only with adequate ventilation. Local exhaust ventilation may be necessary for some operations. Provide general and/or local exhaust ventilation to control airborne levels below the exposure guidelines. Exhaust systems should be designed to move the air away from the source of vapor/aerosol generation and people working at this point. The odor and irritancy of this material are inadequate to warn of excessive exposure. Lethal concentrations may exist in areas with poor ventilation.

Section 9. Physical and Chemical Properties

9.1 Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical State</td>
<td>Liquid</td>
</tr>
<tr>
<td>Color</td>
<td>Yellow</td>
</tr>
<tr>
<td>Odor</td>
<td>Characteristic</td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>0.4 ppm Based on Literature for MDI. Odor is inadequate warning of excessive exposure.</td>
</tr>
<tr>
<td>pH</td>
<td>No test data available</td>
</tr>
<tr>
<td>Melting Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Boiling Point (760 mmHg)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Flash Point - Closed Cup</td>
<td>No test data available</td>
</tr>
<tr>
<td>Evaporation Rate (Butyl Acetate = 1)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Flammability (solid, gas)</td>
<td>Not applicable to liquids</td>
</tr>
<tr>
<td>Flammable Limits In Air</td>
<td>Lower: No test data available</td>
</tr>
<tr>
<td></td>
<td>Upper: No test data available</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>No test data available</td>
</tr>
<tr>
<td>Vapor Density (air = 1)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Specific Gravity (H2O = 1)</td>
<td>No test data available</td>
</tr>
</tbody>
</table>
Solubility in water (by weight) insoluble, reacts, evolution of CO2
Partition coefficient, n-octanol/water (log Pow) Reacts with water.
Autoignition Temperature No test data available
Decomposition Temperature No test data available
Dynamic Viscosity Not applicable
Explosive properties Not explosive
Oxidizing properties No

9.2 Other information

Section 10. Stability and Reactivity

10.1 Reactivity
No dangerous reaction known under conditions of normal use.

10.2 Chemical stability
Stable under recommended storage conditions. See Storage, Section 7. Unstable at elevated temperatures.

10.3 Possibility of hazardous reactions
Can occur. Elevated temperatures can cause hazardous polymerization.

10.4 Conditions to Avoid: Avoid temperatures above 50 °C. Elevated temperatures can cause container to vent and/or rupture. Exposure to elevated temperatures can cause product to decompose.

10.5 Incompatible Materials: Avoid contact with: Acids. Alcohols. Amines. Ammonia. Bases. Metal compounds. Strong oxidizers. Products based on diisocyanates like TDI and MDI react with many materials to release heat. The reaction rate increases with temperature as well as with increased contact; these reactions can become violent. Contact is increased by stirring or if the other material acts as a solvent. Products based on diisocyanates such as TDI and MDI are not soluble in water and will sink to the bottom, but react slowly at the interface. The reaction forms carbon dioxide gas and a layer of solid polyurea. Reaction with water will generate carbon dioxide and heat.

10.6 Hazardous decomposition products
Decomposition products depend upon temperature, air supply and the presence of other materials. Toxic gases are released during decomposition.

Section 11. Toxicological Information

11.1 Information on toxicological effects

Acute Toxicity

Ingestion
Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury. Observations in animals include: Gastrointestinal irritation. As product: Single dose oral LD50 has not been determined. Based on information for component(s): Estimated. LD50, rat > 5,000 mg/kg

Aspiration hazard
Based on physical properties, not likely to be an aspiration hazard.

Dermal
Prolonged skin contact is unlikely to result in absorption of harmful amounts. As product: The dermal LD50 has not been determined. Based on information for component(s): Estimated. LD50, rabbit > 2,000 mg/kg

Inhalation
In confined or poorly ventilated areas, vapor can easily accumulate and can cause unconsciousness and death due to displacement of oxygen. Excessive exposure may cause irritation to upper respiratory tract (nose and throat) and lungs. May cause pulmonary edema (fluid in the lungs.) Effects may be delayed. Decreased lung function has been associated with overexposure to isocyanates. Excessive exposure may increase sensitivity to epinephrine and increase myocardial irritability (irregular heartbeats). May cause central nervous system effects. Symptoms of excessive exposure may be anesthetic or narcotic effects; dizziness and drowsiness may be observed.

As product: The LC50 has not been determined.

Eye damage/eye irritation
May cause moderate eye irritation. May cause slight temporary corneal injury.

Skin corrosion/irritation
Prolonged contact may cause skin irritation with local redness. May stain skin.

Sensitization

Skin
Skin contact may cause an allergic skin reaction. Animal studies have shown that skin contact with isocyanates may play a role in respiratory sensitization.

Respiratory
May cause allergic respiratory response. MDI concentrations below the exposure guidelines may cause allergic respiratory reactions in individuals already sensitized. Asthma-like symptoms may include coughing, difficult breathing and a feeling of tightness in the chest. Occasionally, breathing difficulties may be life threatening.

Repeated Dose Toxicity
Tissue injury in the upper respiratory tract and lungs has been observed in laboratory animals after repeated excessive exposures to MDI/polymeric MDI aerosols.

Chronic Toxicity and Carcinogenicity
Lung tumors have been observed in laboratory animals exposed to respirable aerosol droplets of MDI/Polymeric MDI (6 mg/m3) for their lifetime. Tumors occurred concurrently with respiratory irritation and lung injury. Current exposure guidelines are expected to protect against these effects reported for MDI.

Developmental Toxicity
In laboratory animals, MDI/polymeric MDI did not cause birth defects; other fetal effects occurred only at high doses which were toxic to the mother. Contains component(s) which did not cause birth defects; however, in laboratory animals, other toxic effects to the fetus have been seen. Did not cause birth defects in laboratory animals.

Reproductive Toxicity
No relevant data found.

Genetic Toxicology
Genetic toxicity data on MDI are inconclusive. MDI was weakly positive in some in vitro studies; other in vitro studies were negative. Animal mutagenicity studies were predominantly negative.

Component Toxicology - Methylenediphenyl diisocyanate, homopolymer

<table>
<thead>
<tr>
<th>Inhalation</th>
<th>LC50, 4 h, Aerosol, rat 0.49 mg/l</th>
</tr>
</thead>
</table>

| Inhalation | For similar material(s): 2,4’-Diphenylmethane diisocyanate (CAS 5873-54-1). LC50, 4 h, Aerosol, rat 0.31 mg/l |

| Inhalation | For similar material(s): 4,4’-Methylenediphenyl diisocyanate (CAS 101-68-8). LC50, 1 h, Aerosol, rat 2.24 mg/l |

Component Toxicology - 4,4’-Methylenediphenyl diisocyanate

| Inhalation | LC50, 1 h, Aerosol, rat 2.24 mg/l |

Component Toxicology - 1,1,1,2-Tetrafluoroethane

| Inhalation | LC50, 4 h, rat > 500,000 ppm |

Section 12. Ecological Information

12.1 Toxicity

Data for Component: *Methylenediphenyl diisocyanate, homopolymer*
The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species. Material is not classified as dangerous to aquatic organisms (LC50/EC50/IC50/LL50/EL50 greater than 100 mg/L in most sensitive species).

Fish Acute & Prolonged Toxicity
Based on information for a similar material: LC50, Danio rerio (zebra fish), static test, 96 h: > 1,000 mg/l

Aquatic Invertebrate Acute Toxicity
Based on information for a similar material: EC50, Daphnia magna (Water flea), static test, 24 h: > 1,000 mg/l

Aquatic Plant Toxicity
Based on information for a similar material: NOEC, Desmodesmus subspicatus (green algae), static test, Growth rate inhibition, 72 h: 1,640 mg/l

Toxicity to Micro-organisms
Based on information for a similar material: EC50, activated sludge test (OECD 209), Respiration inhibition, 3 h: > 100 mg/l

Toxicity to Soil Dwelling Organisms
EC50, Eisenia fetida (earthworms), 14 d: > 1,000 mg/kg

Data for Component: **Diphenylmethane-4,4'-di-isocyanate**

The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species. Material is not classified as dangerous to aquatic organisms (LC50/EC50/IC50/LL50/EL50 greater than 100 mg/L in most sensitive species).

Fish Acute & Prolonged Toxicity
Based on information for a similar material: LC50, Danio rerio (zebra fish), static test, 96 h: > 1,000 mg/l

Aquatic Invertebrate Acute Toxicity
Based on information for a similar material: EC50, Daphnia magna (Water flea), static test, 24 h: > 1,000 mg/l

Aquatic Plant Toxicity
Based on information for a similar material: NOEC, Desmodesmus subspicatus (green algae), static test, Growth rate inhibition, 72 h: 1,640 mg/l

Toxicity to Micro-organisms
Based on information for a similar material: EC50, activated sludge test (OECD 209), Respiration inhibition, 3 h: > 100 mg/l

Toxicity to Soil Dwelling Organisms
EC50, Eisenia fetida (earthworms), 14 d: > 1,000 mg/kg

Data for Component: **1,1,1,2-Tetrafluoroethane**

Material is not classified as dangerous to aquatic organisms (LC50/EC50/IC50/LL50/EL50 greater than 100 mg/L in most sensitive species).

Fish Acute & Prolonged Toxicity
LC50, Oncorhynchus mykiss (rainbow trout), static test, 96 h: 450 mg/l

Aquatic Invertebrate Acute Toxicity
EC50, Daphnia magna (Water flea), 48 h, immobilization: 980 mg/l

12.2 Persistence and Degradability

Data for Component: **Methylenediphenyl diisocyanate, homopolymer**
In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates.

<table>
<thead>
<tr>
<th>OECD Biodegradation Tests</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodegradation Exposure Time Method</td>
<td>Not applicable</td>
</tr>
<tr>
<td>0 %</td>
<td>28 d</td>
</tr>
</tbody>
</table>

Data for Component: **Diphenylmethane-4,4’-di-isocyanate**
In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is
expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates.

OECD Biodegradation Tests: Based on information for a similar material:

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %</td>
<td>28 d</td>
<td>OECD 302C Test</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Data for Component: **1,1,1,2-Tetrafluoroethane**
Material is expected to biodegrade only very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability.

OECD Biodegradation Tests:

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 %</td>
<td>28 d</td>
<td>OECD 301D Test</td>
<td>fail</td>
</tr>
</tbody>
</table>

12.3 Bioaccumulative potential

Data for Component: **Methylenediphenyl diisocyanate, homopolymer**

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).
In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Bioconcentration Factor (BCF): Bioconcentration potential is low (BCF < 100 or Log Pow < 3).
92; Cyprinus carpio (Carp)

Data for Component: **Diphenylmethane-4,4’-di-isocyanate**

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).
In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Bioconcentration Factor (BCF): Bioconcentration potential is low (BCF < 100 or Log Pow < 3).
92; Cyprinus carpio (Carp)

Data for Component: **1,1,1,2-Tetrafluoroethane**

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Partition coefficient, n-octanol/water (log Pow): 1.68 Estimated.

12.4 Mobility in soil

Data for Component: **Methylenediphenyl diisocyanate, homopolymer**

Mobility in soil: In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Data for Component: **Diphenylmethane-4,4’-di-isocyanate**

Mobility in soil: In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Data for Component: **1,1,1,2-Tetrafluoroethane**

Mobility in soil: Potential for mobility in soil is high (Koc between 50 and 150).

Partition coefficient, soil organic carbon/water (Koc): 97 Estimated.

Henry’s Law Constant (H): 5.00E-02 atm*m3/mole; 25 °C Measured

12.5 Results of PBT and vPvB assessment

Data for Component: **Methylenediphenyl diisocyanate, homopolymer**

This substance is not considered to be persistent, bioaccumulating and toxic (PBT).

Data for Component: **Diphenylmethane-4,4’-di-isocyanate**

This substance is not considered to be persistent, bioaccumulating and toxic (PBT).

Data for Component: **1,1,1,2-Tetrafluoroethane**

This substance is not considered to be persistent, bioaccumulating and toxic (PBT). This substance is not considered to be very persistent and very bioaccumulating (vPvB).

12.6 Other adverse effects

Product contains no ozone-depleting components.
Section 13. Disposal Considerations

13.1 Waste treatment methods
This product, when being disposed of in its unused and uncontaminated state should be treated as a hazardous waste according to EC Directive 2008/98/EC. Any disposal practices must be in compliance with all national and provincial laws and any municipal or local by-laws governing hazardous waste. For used, contaminated and residual materials additional evaluations may be required. Do not dump into any sewers, on the ground, or into any body of water. Incineration under approved, controlled conditions using incinerators suitable or designed for the disposal of hazardous chemical wastes, is the preferred method for disposal. Small quantities of waste may be pretreated for example with polyol, to neutralise prior to disposal. Empty drums should be decontaminated (see Section 6) and either punctured and scrapped or given to an approved drum reconditioner.

Section 14. Transport Information

ADR/RID
14.1 UN number
UN3500
14.2 UN proper shipping name
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
14.3 Transport hazard class(es)
Hazard Class: 2.2
14.4 Packing Group
Not applicable
14.5 Environmental hazards
Not considered environmentally hazardous based on available data
14.6 Special precautions for user
Special Provisions: no data available
Hazard identification No:20

ADNR / ADN
14.1 UN number
UN3500
14.2 UN proper shipping name
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
14.3 Transport hazard class(es)
Hazard Class: 2.2
14.4 Packing Group
Not applicable
14.5 Environmental hazards
Not considered environmentally hazardous based on available data
14.6 Special precautions for user
no data available

IMDG
14.1 UN number
UN3500
14.2 UN proper shipping name
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
14.3 Transport hazard class(es)
Hazard Class: 2.2
14.4 Packing Group
Not applicable
14.5 Environmental hazards
Not considered environmentally hazardous based on available data

14.6 Special precautions for user
EMS Number: F-C.S-V

14.7 Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code
Not applicable

ICAO/IATA
14.1 UN number
UN3500

14.2 UN proper shipping name
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane

14.3 Transport hazard class(es)
Hazard Class: 2.2

14.4 Packing Group
Not applicable

14.5 Environmental hazards
Not considered environmentally hazardous based on available data

14.6 Special precautions for user
No data available

Section 15. Regulatory Information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture
European Inventory of Existing Commercial Chemical Substances (EINECS)
The components of this product are on the EINECS inventory or are exempt from inventory requirements.

15.2 Chemical Safety Assessment
Not applicable.

Section 16. Other Information

Hazard statement in the composition section
H315 Causes skin irritation.
H317 May cause an allergic skin reaction.
H319 Causes serious eye irritation.
H332 Harmful if inhaled.
H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H335 May cause respiratory irritation.
H351 Suspected of causing cancer.
H373 May cause damage to organs through prolonged or repeated exposure.

Risk-phrases in the Composition section
R20 Harmful by inhalation.
R36/37/38 Irritating to eyes, respiratory system and skin.
R40 Limited evidence of a carcinogenic effect.
R42/43 May cause sensitization by inhalation and skin contact.
R48/20 Harmful: danger of serious damage to health by prolonged exposure through inhalation.

Product Literature
Additional information on this product may be obtained by calling your sales or customer service contact.

Revision

Identification Number: 82662 / 3005 / Issue Date 2013/02/11 / Version: 8.0

Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

Dow Chemical Company Ltd urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer’s/user’s responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer’s/user’s duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.